

- 1) The critical points for f are x = -3, $\frac{3}{3}$
- 5' = 0 or 5' pnt 2) The critical points for f' are x = -3, -1, 2, 5, 4\$11 =0 OR \$1 DNE
- 3) f has a local maximum when x = 3
- $5^{1}(3) = 0 + 5^{1}$ changes Ferm + 10^{-1} 4) f has its maximum value on [-5, 6] when x = 5 $5^{1}(3) = 0 + 5^{1}$ changes Ferm + 10^{-1} changes Ferm + 10^{-1} $5^{1}(3) = 0 + 5^{1}$ changes Ferm + 10^{-1} changes Ferm + 10

The graph of f is concave up on the interval(s)

The x-coordinates of the points of inflection are $x = \frac{1}{2}$ f' CHAMBES FROM INCRTD DETE OR DETETTING f' has its maximum value when x = 2

f'' has its maximum value when x =

10) Does f' have a minimum value on [-5,6]? Explain. YES— EVT (f') CMT f'

11) Does f'' have a minimum value on [-5,6]? Explain.

	x	f(x) f	f'(x)	f''(x)
	2	6	2	-8
	4	12	0	1
MSEC	$-\frac{6}{3}$	15¬	3	0
= 3.0	~ <u>8</u>	20	4	5
	10	25	2	6

7) f'(x) = 2.25 has a solution in [6,8]

(8) f'(x) = 2.50 has a solution in [6, 8] MVT

9) f'(x) = 2.75 has a solution in [6,8]

10) The line y = 15 is a horizontal asymptote.

= 11) The line x = 7 is a vertical asymptote.

f CMT.

Homework/Classwork:

AP Packet #30 – 36, 41 – 45